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Gaussian factorization of hydrodynamic correlation functions and mode-coupling memory kernels
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A simple method to determine mode-coupling memory functions in generalized Langevin equations is
obtained by explicitly expressing the random force of the slow hydrodynamic modes in terms of pair interac-
tions in liquids and by Gaussian factoring the resulting multiple-point time correlation functions into products
of linear correlation functions. The approach is used to derive the mode-coupling memory kernels for the
velocity autocorrelation function, four-point bilinear density correlation function, and density correlation func-
tion of linear molecular liquids. These generalized Langevin equations and their associated memory kernels are
useful for calculating relaxation processes and spectroscopic measurements in liquids and solvents. As a central
result of our analysis, the non-Gaussian behavior of the bilinear density correlation function is quantitatively
related to the nonexponential nature of linear hydrodynamic modes. This relation aids in the understanding of
recent simulation results of non-Gaussian indicators in supercooled liquids.
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I. INTRODUCTION: GENERALIZED LANGEVIN
EQUATION, GAUSSIAN FACTORIZATION,

AND MODE-COUPLING THEORY

The time correlation functions of hydrodynamic mod
are essential for studying liquids and solvents. These hy
dynamic modes are a set of slowly varying stochastic
namical variables whose relaxation can be described by
generalized Langevin equation~GLE!. The time-dependen
memory kernel describes the memory effect on the relaxa
of the system. The usual hydrodynamics limit assumes
Markovian approximation, where the GLE reduces to
Langevin equation and the hydrodynamic mode decays
ponentially. However, deviations from the hydrodynamic b
havior have been observed on the experimental time sc
especially in heterogeneous systems such as low-temper
glass-forming liquids. In these systems, linear hydrodyna
modes are coupled to nonlinear modes, which slow down
relaxation dramatically. These mode-coupling effects w
first used to calculate transport coefficients near the crit
point @1–3#. Later, the mode-coupling concept was shown
be crucial in the interpretation of the hydrodynamic lon
time tail. Götze derived mode-coupling equations to expla
the a andb relaxation processes of the glass transition@4#.
Other approaches include extended hydrodynamics and
field theoretical formalism of nonlinear hydrodynamic co
pling @5#. A recent review by Bagchi and Bhattacharyya pr
vides a comprehensive account of various approache
mode-coupling theory@6#. Although successful, the standa
mode-coupling approximation has not been obtained i
systematic and straightforward fashion. A simple understa
ing of mode-coupling effects and their validity for describin
low-temperature dynamics is still lacking@7#. In this paper,
we explore an alternative route to obtaining ideal mo
coupling equations via the direct Gaussian factorization
the multiple-point correlation function in the memory kern
Within this approximation, we examine the underlying re
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tion between the non-Gaussian behavior of nonlinear hyd
dynamic modes and the nonexponential behavior of lin
hydrodynamic modes.

The general goal of molecule hydrodynamic analysis is
predict time correlation over the complete time domain fro
equilibrium distributions and other measurements. One w
to establish such a relationship is the simple Gaussian
proximation, which treats density fluctuations in liquids
Gaussian variables and decomposes a nonlinear time c
lation function into products of linear correlation function
The simple factorization scheme destroys the initial and fi
equilibrium distributions and leads to unphysical results
overlapping particles. To avoid this, thermal equilibrium
imposed at the initial and final times. Formally, we repres
the Gaussian factorization approximation as

G~G,G8,t !5^G8ueiLt uG&'g~G!g~G8! )
i PG, j PG8

G~ i , j ,t !,

~1!

whereG is a set of phase space points at the initial time,G8
is a set of phase space points at the final time, a
G(G,G8,t) is the multipoint time correlation function. As
result of the decomposition,g(G) andg(G8) are the equilib-
rium distribution functions for the initial and final phas
space points, andG( i , j ,t) is the linear time correlation func
tion with i in the initial configuration andj in the final con-
figuration. Equation~1! recovers the long-time equilibrium
limit but is not correct in the short time. As an alternative, w
impose the correct initial distribution by writingG(G,G8,t)
'g(G)P i , jG( i , j ,t)/G( i , j ,0) where the linear time correla
tion function is normalized. To bridge the two limiting case
we can further improve the approximation by combining t
above two expressions as

G~G,G8,t !'g~G!g~G8!@P i , jG~ i , j ,t !2P i , jGs~ i , j ,t !#

1g~G!P i , jGs~ i , j ,t !/G~ i , j ,0!,

where Gs(t) is the short-time part of the time correlatio
function. Although there are various versions of Gauss
©2003 The American Physical Society16-1
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factorization, the key element of dynamics decomposit
remains the same. Equation~1! will be used in this paper
because we are mainly concerned with the long-time beh
ior.

A rigorous formulation for calculating dynamic correla
tion functions is the generalized Langevin equation deriv
with the projection operator technique@8,9#. Instead of de-
composing the correlation function directly, we now app
the approximation to the memory kernel, yielding

M ~G,G8,t !}^G8ueiQLtuG&'g~G!g~G8! )
i PG, j PG8

G~ i , j ,t !,

~2!

where Q512P is orthogonal to the projectorP, and all
other notation follows the definition in Eq.~1!. Combined
with the random phase approximation for the direct corre
tion functionc(r )'2bU(r )g(r ), this approach leads to th
standard mode-coupling approximation for the memory k
nel @10#. This approach is better justified in an elegant de
vation by Zaccarelli et al., which exploits the self-
consistency of the fluctuation-dissipation relationship@11#.
Because the memory kernel propagates in phase spac
thogonally to the slow variable, dynamic decomposition
the memory kernel is more reasonable than direct decom
sition. Thus, the mode-coupling approximation is believed
be more reliable than the direct factorization expression
then follows that we can apply the factorization scheme
higher-order memory kernels as represented in the form
continued fractions. In this sense, the GLE provides a co
pact formalism to construct dynamic correlation with initi
moments and nonlinear memory kernels in the most e
nomical way, whereas Gaussian factorization simply p
vides a closure to the hierarchy. Higher-order memory k
nels and other forms of closure may lead to alternatives
the standard mode-coupling expressions. In the follow
sections, we apply the Gaussian decomposition appro
and, equivalently, the self-consistent derivation by Zaccar
et al. to obtain mode-coupling kernels for the velocity aut
correlation function, bilinear density correlation functio
and density fluctuations in linear molecular liquids.

The Gaussian approximation is valid for long-time a
large displacements, which according to the central li
theorem can be treated as random Gaussian fluctuat
Away from the hydrodynamic limit, the relaxation process
not Markovian and the fluctuation is not Gaussian. The
namic decomposition scheme has to be modified to inco
rate nonhydrodynamic effects observed on the experime
time scale. This indeed is the case for low-temperature
tems with dynamic clustering effects. Recently, the valid
of Gaussian factorization in low-temperature liquids was
amined and non-Gaussian effects were investigated. For
ample, the difference between

^r~rW1 ,t !r~rW1,0!r~rW2 ,t !r~rW2,0!&

and

^r~rW1 ,t !r~rW1,0!&^r~rW2 ,t !r~rW2,0!&
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was studied by Glozter and co-workers in glassy syste
using numerical simulation@12,13#. Their results show tha
the Gaussian factorization scheme fits the short-time li
when the equilibrium effects dominate. The error introduc
by the Gaussian approximation increases to a maxim
value before decaying to zero. The peak value of the n
Gaussian indicator and the corresponding time incre
strongly as the temperature decreases. These non-Gau
effects have also been observed in recent experiments
Angell, Weekset al., and Cui and Rice and are correlate
with the behavior of low-temperature liquids near the gla
transition temperature@14–16#. These measurements suppl
ment traditional scattering measurements, which often rev
highly nonexponential decay in complex systems. An imp
tant result of the paper is the relation between the n
Gaussian behavior of the nonlinear density correlation fu
tion and the nonexponential decay of the line
hydrodynamics mode. This relation is developed in S
IV B.

II. DERIVATION OF IDEAL MODE-COUPLING THEORY
EQUATION FOR THE INTERMEDIATE

SCATTERING FUNCTION

We begin with the GLE and the standard projection o
erator formalism. The notation here follows a review artic
by Berne @9#. The projection operatorP is defined asP
5^...,A†&^A,A†&21, where ^A,B†& is the average
over the equilibrium canonical ensemble:̂ A,B†&
5*dG r0(G)A(G)B†(G). The GLE is written asȦ(t)
5 iVA(t)2*K(t2t)A(t)dt1 f (t), whereV is the projec-
tion of the eigenfrequency matrix onto the slow variab
space, defined asiV5^ iLA,A†&^A,A†&21, iL 5$...,H% is
the Liouville operator, andH is the Hamiltonian. The random
force f (t) represents the fast decay of the system, define
f (t)5exp$iQLt%QiLA, with the projector Q512P. The
memory kernel is related to the reduced correlation funct
of the random force by the fluctuation-dissipation relati
K(t)5^ f (t), f †&^A,A†&21. One widely used approach fo
evaluating the memory kernel is to project the random fo
to a bilinear operator and factor the resulting kernel onto
product of correlation functions of linear modes@17#. The
difficulty with this approach is that the choice of the biline
variable is ambiguous and is difficult to justify rigorousl
Also, the random force in the fast space,f (t)
5exp$iQLt%QiLA, is approximated by the evolution of th
random force in the full space,f (t)5exp$iLt%QiLA. In a
more rigorous approach developed by Oppenheim and
workers@18–20#, all the possible combinations of the slo
modes, such asAA,AAA,..., areincluded in the construction
of the slow space. It is shown that in evaluating the GLE
relatively few additional nonlinear variables are involved.

In a recent paper@10#, we employed a simple approach
obtain the mode-coupling memory kernel forF(kW ,t). The
intermediate scattering function is defined asFkW(t)
5^r(kW ,t)r(2kW )&, where r(kW ,t)5(n51

N exp$ikW•rWn(t)% is the
collective density andN is the total number of particles in th
system@21#. Our approach is motivated by the observati
that the random force on the slow mode involves the int
6-2
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action potential and its derivatives, which can be written
Fourier integrals of the bilinear density mode. This biline
density mode provides a natural choice for the projection
decomposition used in the mode-coupling approximati
Our derivation of the ideal mode-coupling equation involv
Gaussian factorization and the random phase approxima
~RPA!. The GLE forA5$r(kW ,t),ṙ(kW ,t)% is

d

dt S r~kW ,t !

ṙ~kW ,t !
D 5S 0 1

2vk
2 0D S r~kW ,t !

ṙ~kW ,t !
D 2E

0

tS 0 0

0 K22~ t2t!
D

3S r~k,t!

ṙ~k,t! Ddt1S 0
f 2~ t ! D , ~3!

wherevk
25k2/(Skmb) andSk is the structure factor. By vir-

tue of the fluctuation-dissipation relation, the nonzero e
mentK22(t) of the memory kernel matrix is given by

K22~ t !5
mb^r̈1vk

2rueiQLtur̈1vk
2r&

Nk2 , ~4!

where the random forcef 2(t)5exp$iQLt%(r̈1vk
2r). The

second-order time derivative of the collective density in Fo
rier space is

r̈~kW ,t !52(
q

kqz

mV
Uqr~kW2qW ,t !r~qW ,t !

2k2(
n51

N

vnz
2 ~ t !eikW•rWn~ t !, ~5!

where UqW is the Fourier transform of the pair interactio
potential. The second term in the above equation is negle
because the first term is larger in the smallk limit. The
Gaussian factorization approximation of the relevant par
the memory kernel leads to

^r̈ueiQLtur̈&5
k2

m2V2 (
qW ,qW 8

qzqz8UqWUqW 8

3^r~kW2qW !r~qW !ueiQLtur~kW2qW 8!r~qW 8!&

'(
qW

N2k2

m2V2 @qz
2UqW

21qz~k2qz!UqUkW2qW #

3FkW2qW~ t !FqW~ t !, ~6!

where exp$iQLt% is approximated by exp$iLt% for the fast ran-
dom force and the wave vectorkW is directed along thez axis.
Using the random phase approximation,UkW is proportional to
the direct correlation function,ckW52bUkW , which allows us
to rewrite the above equation as the well-known mo
coupling memory kernel for the intermediate scattering fu
tion FkW(t) @21#:

K22~ t !5
n

mb

1

~2p!3 E dqW @qz
2cqW

21qz~k2qz!cqckW2qW #

3FkW2qW~ t !FqW~ t !, ~7!
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where n5^r& is the number density. In this approach, t
introduction of the extra bilinear mode projection operator
avoided, and the nonlinear coupling term comes from
Fourier expansion of the random force on the density. T
Gaussian factorization and the mean-field approximat
~i.e., RPA! lead to a self-consistent mode-coupling memo
kernel. Similar approximations have been used recently
computing linear and nonlinear Raman line shapes@10#.

In our derivation, exp$iQLt% is approximated as exp$iLt%
and higher-orderkW terms are ignored. These difficulties a
resolved in a recent paper by Zaccarelliet al. @11#. In their
paper, a self-consistent approach is introduced to derive
exact formal expression for the random force. The expl
operator expression of the random force,f (t)5exp$iQLt%, is
not used, because the projection operatorQ is difficult to
evaluate. Instead, they derived the expression for the ran
force by applying the GLE directly:

f 2~ t !5 r̈~kW ,t !1vk
2r~kW ,t !1E

0

t

K22~ t2t!ṙ~kW ,t !dt. ~8!

The fluctuation-dissipation relationship is used to evalu
the memory kernel. Gaussian factorization of the mem
kernel leads to

^ f 2~ t ! f 2* &5 (
qW ÞkW

N2k2

m2V2 @qz
2UqW

21qz~k2qz!UqUkW2qW #

3FkW2qW~ t !FqW~ t !

1
k4N

m2b2 ~11bnUkW2Sk
21!2FkW~ t !

1
k2N

mb
~11bnUkW2Sk

21!

3E
0

t

K22~ t2t!
]

]t
FkW~t!dt. ~9!

The direct correlation functionck is related to the structure
factor Sk by ck5(12Sk

21)/n, so that 11bnUkW2Sk
21}ck

1bUk'0. By virtue of the RPA, the additional terms cance
leading to the lowest-order mode-coupling memory kerne

Based on the above description, a simple procedure
derive the mode-coupling memory kernels follows. The G
for a set of slow variablesA defines an expression for th
random force f (t)5Ȧ2 iVA2K* A. The fluctuation-
dissipation relationK(t)5^ f (t) f (0)& determines a self-
consistent equation for the memory kernel. The first term
the equation,̂ ȦȦ&, is rewritten in terms of the interaction
potential and the bilinear density mode, and is then deco
posed into products of linear hydrodynamic correlation fun
tions. Several other terms, including the self-consist
terms, are removed under the random phase approxima
or mean-field approximations of a similar nature. Althou
we use this procedure in our derivation, we can obtain
actly the same mode-coupling expression from the simp
scheme introduced in Ref.@10# and in Eqs.~6! and ~7!. In
fact, the removal of the self-consistent terms of the mem
kernel in Eq.~9! justifies the direct evaluation of the memo
6-3
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kernel @10#. The random force can be written asf 5(1
2Q) iLA'*dkW U(kW )A2(kW ,t), where A2 is the correlation
function of bilinear modes. Then Gaussian factorizat
leads toK(t)5^ f (t) f (0)&'A(kW ,t)A(kW ,t), which recovers
the mode-coupling memory kernel.

III. VELOCITY AUTOCORRELATION FUNCTION

The velocity autocorrelation function of one tagged p
ticle in liquids has a long-time tail, which decays ast23/2

@22#. Mode-coupling theory successfully explains this lon
time tail. We apply the approach outlined earlier to derive
same mode-coupling effects predicted by other meth
@17,23,24#. We first use a basis set with a single elemenA
5v1t(t). Using the projection operator method, we write t
random force asf (t)5Ȧ(t)1*0

t K(t2t)A(t)dt, where the
kernel is given by the fluctuation-dissipation theorem,

K~ t !5mb^ f ~ t ! f * &

5mbK F Ȧ~ t !1E
0

t

K~ t2t!Ȧ~t!dtG Ȧ* L . ~10!

ExpressingȦ(t) in Fourier space,

Ȧ~ t !5 (
qW Þ0

iqx

m1V
U1qr1~2qW ,t !@r~qW ,t !2r1~qW ,t !#, ~11!

the correlation function of the random force becomes

^ f ~ t ! f * &5 (
qW ,qW 8

qxqx8

m1
2V2 U1qWU1qW 8^$r1~2qW ,t !@r~qW ,t !

2r1~qW ,t !#%$r1~2qW 8!@r~qW 8!2r1~qW 8!#%* &

1E
0

t

K~ t2t!^A~t!Ȧ* &, ~12!

where the density of the tagged particle isr1(kW ,t)
5exp$ikW•rW1(t)%. With Gaussian factorization and the RP
~i.e., c1kW'2bU1kW), the mode-coupling memory kernel be
comes

K~ t !5
n

V (
qW

qx
2c1qW

2 FqW
s~ t !FqW~ t !, ~13!

where the self-intermediate scattering function is defined
F

kW
s
(t)5^r1(kW ,t)r1(2kW )&. This result can also be obtaine

by inserting the projection operator of the bilinear mo
r1kWrkW

* into K(t). Clearly, this bilinear mode arises from th
expansion ofv̇1t(t) in Fourier space.

Next we study the time evolution of the longitudinal cu
rent and the density of the tagged particle. Unlike the ba
set for the collective density, this basis set includes
double time derivative of the tagged particle density beca
the single longitudinal current is not a conserved quan
06111
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even for zero wave vector. Using the projection opera
method, the GLE for the three-basis-set elements is wri
as

d

dt S r1~kW ,t !

ṙ1~kW ,t !

r̈1~kW ,t !
D 5S 0 1 0

0 0 1

0 2~3v0
21V0

2! 0
D S r1~kW ,t !

ṙ1~kW ,t !

r̈1~kW ,t !
D

1S 0
0

f 3~ t !
D 2E

0

tS 0 0 0

0 0 0

K31~t! 0 K33~t!
D

3S r1~kW ,t2t!

ṙ1~kW ,t2t!

r̈1~kW ,t2t!
D dt, ~14!

where the random force is given by

f 3~ t !5
d

dt
r̈1~kW ,t !1~3v0

21V0
2!ṙ1~kW ,t !

1E
0

t

K31~ t2t!r1~kW ,t!dt

1E
0

t

K33~ t2t!r̈1~kW ,t!dt. ~15!

v0
25k2/(mb) and V0 is the Einstein frequency,V0

2

5^D2U(r )&/3m. Then, dr̈1(kW ,t)/dt is explicitly expanded
as

d

dt
r̈1~kW ,t !52 ik3v1z

3 ~ t !eikW•rW1~ t !

23ik2(
qW

qz

m1V
U1qW j 1z~kW2qW ,t !r~qW ,t !

1 i(
qW

kqz

m1V
U1qW@qa j 1a~kW2qW ,t !#r~qW ,t !

2 i(
qW

kqz

m1V
U1qW@qa j a~qW ,t !#r1~kW2qW ,t !,

~16!

wherej a(kW ,t) is the collective current density function alon
the a axis, j a(kW ,t)5(n51

N va(t)exp$ikW•rWn(t)%, j 1a(kW ,t) is the

single current density function along thea axis, j a(kW ,t)
5v1a(t)exp$ikW•rW1(t)%, and the repeateda indicates the sum
over the three Cartesian axes. By substituting Eq.~15! into
the expression for the random force, the memory kernel m
trix is calculated from the fluctuation-dissipation relatio
ships, using the approximationsV050, FkW(t)5SkFkW

s
(t), and

c1kW52bU1kW , and applying the Gaussian factorization pr
cedure. The correlation function of the random force simp
fies to
6-4
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^ f 3~ t ! f 3* &5(
q

2Nk2qz
2qx

2U1qW
2

m1
2V2 @C

kW2qW ,x

s
~ t !FqW~ t !

1F
kW2qW
s

~ t !CqW ,x~ t !#. ~17!

In the above equation, we ignore the longitudinal curr
correlation functions, which decay faster than the transve
current correlation functions. Equation~17! gives the same
result as the mode-coupling theory~MCT! expression ob-
tained by inserting the bilinear moder1,kW2qW j qW @21#.

IV. BILINEAR DENSITY MODES

A. GLE

In this section, we study the time evolution of the biline
collective density mode used in calculating Raman spectr
liquids. The bilinear modesr(kW ,t)r(2kW ,t) do not follow
simple hydrodynamic equations. Calculations of the bilin
density correlation function have been carried out, parti
larly, in the context of Raman spectra@10,25,26,27#. A
simple approach to evaluating the bilinear correlation fu
tion is to decompose the four-point correlation function in
the product of two linear density correlation functions@10#.
Here we apply the proposed scheme to obtain the time e
lution of the bilinear density with the mode-couplin
memory kernel and, in the next subsection, we compare
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MCT result with simple Gaussian factorization to establ
the validity of the Gaussian factorization scheme.

A three-element basis set of bilinear modes is construc

A~ t !5S A1~ t !
A2~ t !
A3~ t !

D 5S r~kW ,t !r~2kW ,t !

r~kW ,t !P~2kW ,t !1r~2kW ,t !P~kW ,t !

P~kW ,t !P~2kW ,t !
D ,

~18!

where P(kW ,t) is the momentum density function,P(kW ,t)
5(n51

N Pnz exp$ikW•rWn(t)%, andPnz is the longitudinal momen-
tum of thenth particle. A similar basis set was used by Ma
den for analyzing a depolarized Raman spectrum@25#. As an
approximation, we neglect temperature fluctuations beca
the effects of the temperature fluctuations are smaller t
the coupling between the density and momentum fluctuati
@28#.

We derive the GLE for this basis set with the projecti
operator approach. A complete description of the project
operator includes the projection onto different wave vecto
However, according to Madden and to Keyes and Opp
heim, the dominant contribution arises from the diagonal
ements with the same wave vectors, which allows us to
nore the mixing effects of different wave vectors in o
derivation@25,29#. The susceptibility matrix of this basis se
is
~A,A†!5S N2Sk
~4! 0 2N2mb21Sk

0 2Nmb21@NSk2Re~S
kW ,kW ,22kW
~3!

!# 0

2N2mb21Sk 0 Nm4^vz
4&1Nm2b22~2N1S2k23!

D . ~19!

In Eq. ~19!, Sk
(4) is the four-point equilibrium distribution correlation function, defined as^rkWrkWr2kWr2kW&/N

2, which reduces to

2Sk
2 for a Gaussian system;S

kW ,kW ,22kW
(3)

is the three-point equilibrium distribution correlation function, defined as^rkWrkWr22kW&/N,
which has the sameN order asSk . The GLE is explicitly given as

S Ȧ1~ t !

Ȧ2~ t !

Ȧ3~ t !
D 5 iS 0 V12 0

V21 0 V23

0 V32 0
D S A1~ t !

A2~ t !
A3~ t !

D 2S K11 K12 K13

K21 K22 K23

K31 K32 K33

D * S A1

A2

A3

D 1S f 1~ t !
f 2~ t !
f 3~ t !

D , ~20!

where the eigenfrequencies are

V125
k

m
,

V215
k

m

2m@3NSk12SkS2k22Sk
222 Re~S

kW ,kW ,22kW
~3!

!2S2k Re~S
kW ,kW ,22kW
~3!

!/N#

b@N~2Sk
~4!2Sk

2!1S2kSk
~4!#

,

V235
k

m

2@N~Sk
~4!1Sk

2!1S2kSk
~4!22SkSk

~4!2Sk Re~S
kW ,kW ,22kW
~3!

!#

N~2Sk
~4!2Sk

2!1S2kSk
~4! ,

V325
k

m

m~N1S2k22Sk!

NSk2Re~S
kW ,kW ,22kW
~3!

!
, ~21!
6-5
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with * representing a convolution, A* B5*0
t A(t

2t)B(t)dt. When the equilibrium system is Gaussian, t
eigenfrequencies simplify to

V125
k

m
, V21.

2k

bSk
, V23.

2k

m
, V32.

k

bSk
,

~22!

which is accurate to the order ofN21. The random forces are
given as

f 1~ t !50,

f 2~ t !5Ȧ2~ t !2 iV21A1~ t !2 iV23A3~ t !1K21* A1

1K22* A21K23* A3,

f 3~ t !5Ȧ3~ t !2 iV32A2~ t !1K31* A11K32* A21K33* A3,
~23!

with Ȧ2(t) and Ȧ3(t) explicitly expressed as

Ȧ2~ t !5 i
k

m
@2A3~ t !1E~kW ,t !r* ~kW ,t !1E* ~kW ,t !r~kW ,t !#,

~24!

Ȧ3~ t !5 i
k

m
@E~kW ,t !P~2kW ,t !1E* ~kW ,t !P~kW ,t !#, ~25!

andE(kW ,t) defined as

E~kW ,t !5 (
n51

N

Pnz
2 eikW•rWn~ t !1

m

V (
qW

Uqqz

k
r~kW2qW ,t !r~qW ,t !.

~26!

Within the proposed scheme, we assume that the equ
rium system is close to Gaussian, which allows
to use the eigenfrequencies in Eq.~22! instead of Eq.
~21!. The multipoint correlation functions, e.g.,̂r(kW

2qW ,t)r(qW ,t)r(2kW ,t)r* (kW2qW 8)r* (qW 8)r(kW )&, are factored
as N3FkW(t)FkW2qW(t)FqW(t). In addition, the RPA relationckW

52bUkW removes the linear terms in the memory kern
matrix. A complicated random phase approximation to
three- and four-body interactions is required here. Since
assume that the equilibrium system is Gaussian, the a
tional many-body terms reduce to pair interaction terms.
ing these approximations, the three nonzero elements o
memory kernel matrix are

K22~ t !.
n

mk2bVSk
(
qÞk

C~k,q!FkW2qW~ t !FqW~ t !FkW~ t !,

K31~ t !.
2n

3Skk
2b2V (

qÞk
C~k,q!FkW2qW~ t !FqW~ t !FPP,kW~ t !,

K33~ t !.
4n

3mk2bV (
qÞk

C~k,q!FkW2qW~ t !FqW~ t !FPP,kW~ t !,

~27!
06111
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s

l
e
e
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he

where

C~k,q!5cq
2~kW•qW !21cqcukW2qW u@kW•~kW2qW !#,

FPP,kW~ t !5
b^Pk~ t !Pk* ~0!&

Nm
. ~28!

Equations~20! and ~27! relate the bilinear density corre
lation function to the linear density correlation function a
give the explicit mode-coupling memory kernel matrix f
evaluating the bilinear density correlation function. In pri
ciple, once fast-decay memory kernels are incorporated,
can explicitly evaluate the relaxation of the bilinear colle
tive density over the complete time scale and predict
non-Gaussian effects of the bilinear density correlation fu
tion. In this paper, we do not make this explicit calculatio
instead, we examine the long-time behavior of the biline
density correlation function and the nature of Gaussian f
torization in the next section.

B. Non-Gaussian effects

In the hydrodynamic limit, we can apply the Gaussi
factorization directly to the four-point density correlatio
function to yield the product of two linear density correlatio
functions. In the previous section, the mode-coupling eq
tion for the bilinear mode is derived using the Gaussian
proximation. As stated earlier, the GLE describes the t
dynamics, which is neither linear nor Gaussian, whereas
Gaussian approximation introduces a closure to the hie
chical equation. In a sense, the Gaussian approximatio
not compatible with the nonlinear nature of the GLE. Thu
we can explore this inconsistency by calculating the er
introduced by non-Gaussian effects. In this section, we
amine the nature of non-Gaussian effects within the fram
work of the mode-coupling equation for the bilinear mo
and demonstrate that the non-Gaussian effects can be q
tified by the nonexponential decay of the linear hydrod
namic mode.

In Sec. IV A, we use the GLE to describe the time evo
tion of the bilinear collective density and explicitly deriv
eigenfrequencies and mode-coupling memory kernels.
expressions thus obtained are

Ȧ1~ t !5 i
k

m
A2~ t !,

Ȧ2~ t !5 i
2k

bSk
A1~ t !1 i

2k

m
A3~ t !2K22* A21 f 2~ t !,

Ȧ3~ t !5 i
2k

bSk
A2~ t !2K31* A12K33* A31 f 3~ t !, ~29!

where the equilibrium system is assumed to be Gaussian,
the memory kernels are from Eq.~20!. Since the above
memory kernels do not include the fast-decay friction in t
short time, we focus on the long-time behavior of the syste
As stated in the Introduction, we can either apply the Gau
ian factorization directly to the bilinear correlation functio
6-6
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and obtain a simple Gaussian expression, or apply the Ga
ian factorization to the memory kernel to obtain a mod
coupling expression. These two procedures leads to incon
tency between the nonlinear memory kernel and the lin
Gaussian factorization. Therefore, we can evaluate the n
Gaussian behavior by comparing the results obtained f
direct factorization and from factoring the mode-coupli
memory kernel.

Direct Gaussian factorization of̂ A1(t)A1& yields

^A1(t)A1&G5N2F
kW
2
(t). From Eq. ~29! the first-order time

derivative of^A1(t)A1* & is

^Ȧ1~ t !A1* &5 i
k

m
^A2~ t !A1* &, ~30!

which, after Gaussian factorization, becomes

^Ȧ1~ t !A1* &G52N2FkW~ t !ḞkW~ t !. ~31!

The first-order time derivative ofN2F
kW
2
(t) gives the same

result, i.e.,̂ Ȧ1(t)A1* &G5d/dt@^A1(t)A1* &G#, which demon-
strates that the Gaussian factorization scheme of MCT
consistent for the first-order time derivative.

The second-order time derivative of^A1(t)A1* & is

K d2

dt2
A1~ t !A1* L 522

k2

mbSk
^A1~ t !A1* &22

k2

m2 ^A3~ t !A1* &

2E
0

t

K22~ t2t!^Ȧ1~t!A1* &dt, ~32!

which, after Gaussian factorization, becomes

K d2

dt2
A1~ t !A1* L

G

522vk
2N2F

kW
2
~ t !22N2Ḟ

kW
2
~ t !

2
2nN2

mk2bVSk
(
qÞk

C~k,q!

3E
0

t

FkW2qW~ t2t!FqW~ t2t!FkW~ t2t!

3FkW~t!ḞkW~t!dt. ~33!

To simplify the above equation, we notice thatFkW(t
2t)FkW(t) reduces toFkW(t)Sk whent→0 or t. This equiva-
lence holds for the exponential expression, which cor
sponds to the hydrodynamic limit. Therefore, we introduc
difference function defined byFkW(t2t)FkW(t)5FkW(t)Sk
1D(t,t). To be consistent, the mode-coupling equation
the intermediate scattering functionFkW(t) is used for its
second-order derivative, giving

F̈kW~ t !52vk
2FkW~ t !2 (

qW ÞkW

n

mk2bV
C~kW ,qW !

3E
0

t

FkW2qW~ t2t!FqW~ t2t!ḞkW~t!dt. ~34!
06111
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Substituting the above equation into Eq.~33!, the final result
simplifies to

K d2

dt2
A1~ t !A1* L

G

52N2F̈kW~ t !FkW~ t !12N2Ḟ
kW
2
~ t !

2
2nN2

mk2bVSk
(
qÞk

C~k,q!

3E
0

t

D~ t,t!FkW2qW~ t2t!FqW~ t2t!

3ḞkW~t!dt. ~35!

Then, the difference between the two Gaussian factoriza
schemes, i.e., the non-Gaussian deviation, is

K d2

dt2
A1~ t !A1* L

G

2
d2

dt2
^A1~ t !A1* &G

52
2nN2

mk2bVSk
(
qÞk

C~k,q!E
0

t

D~ t,t!FkW2qW~ t2t!

3FqW~ t2t!ḞkW~t!dt, ~36!

which depends on the difference functionD(t,t).
Equation ~36! relates the non-Gaussian behavior of t

bilinear correlation function to the non-Markovian nature
the correlation functions. The difference functionD(t,t)
starts from zero and reaches a maximum at an intermed
time, and then decays to zero in the hydrodynamics lim
Therefore, the difference function explains the non-Gauss
behavior observed numerically@12,13#. If the system is in
the hydrodynamic limit, the bilinear time correlation fun
tion is Gaussian in the second-order time derivative. In t
limit, the mode-coupling equation for the bilinear density
consistent with the mode-coupling equation for the line
density up to the second-order time derivative. Thus, up
second order, Gaussian factorization is a good approxima
for normal liquids in the long-time limit becauseD(t,t) is
small compared toFkW(t)Sk . The relaxation in glasse
strongly deviates from exponential decay, making the non
ponential factorD(t,t) important in determining the non
Gaussian behavior of the glass system.

As the last step, we calculate the third-order time deri
tive of ^A1(t)A1* &. The higher-order time derivatives are u
necessary because the original equations for this basis se
only exact at the third order, and the higher-order time
rivatives repeat the results of these three lower-order der
tives. From Eq. ~29!, the third-order time derivative o
^A1(t)A1* & is written as

K d3

dt3
A1~ t !A1* L 522

k2

mbSk
^Ȧ1~ t !A1* &22

k2

m2 ^Ȧ3~ t !A1* &

2
d

dt E0

t

K22~ t2t!^Ȧ1~t!A1* &dt. ~37!
6-7
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Similarly to the second-order calculations, we rewrite t
equation as

FkW~ t2t!^Ä1~t!A1* &G5N2Sk@2ḞkW~ t !ḞkW~t!1F̈kW~ t !FkW~t!

1F̈kW~t!FkW~ t !#1D1~ t,t!,

FPP,kW~ t2t!^A1~t!A1* &G5
N2Skmb

k2 F̈kW~ t !FkW~t!1D2~ t,t!,

FPP,kW~ t2t!^A3~t!A1* &G5
N2m2

k2 ḞkW~ t !ḞkW~t!1D3~ t,t!.

~38!

D i(t,t) are quantities similar toD(t,t) used in the second
order time derivative and also vanish in the hydrodynam
limit. The factored result for the third-order time derivativ
of ^A1(t)A* & is

K d3

dt3
A1~ t !A1* L

G

5
d3

dt3
^A1~ t !A1* &G

1
n2bN

mk2 (
qW ÞkW

C~kW ,qW !E
0

t

dt FkW2qW~ t2t!

3FqW~ t2t!DF~ t,t!, ~39!

with

DF~ t,t!5
7

3
F̈kW~ t !FkW~t!2FkW~ t !F̈kW~t!

2
4

3
ḞkW~ t !ḞkW~t!1(

i 51

3

D i~ t,t!, ~40!

which vanishes in the hydrodynamic limit. Thus, in agre
ment with the second-derivative result,^(d3/dt3)A1(t)A1* &G

and (d3/dt3)^A1(t)A1* &G are the same in the hydrodynam
limit.

Our results demonstrate the strong correlation betw
the non-Gaussian behavior of the bilinear correlation fu
tion and the nonexponential decay of linear hydrodynam
modes. For simple liquids close to the hydrodynamic lim
Gaussian factorization is a good approximation to the bi
ear correlation function becauseDF(t,t) is a small quantity.
For complex liquid systems,DF(t,t) is significant and the
non-Gaussian behavior becomes more prominent. For gl
systems, the regime of nonhydrodynamic relaxation and
peak value of the non-Gaussian behavior increase with
creasing temperature. These conclusions are consistent
experiments and simulations.

V. LINEAR MOLECULAR LIQUIDS

In this section, we derive MCT for liquid systems consi
ing of linear molecules such as CS2. Linear molecular liq-
uids are a bridge between atomic liquids that have no r
tion and vibration degrees of freedom and nonline
molecule liquids that have more complicated coupli
06111
e

c
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n
-
c
,
-

sy
e
e-
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among the rotational, translational, and vibrational degr
of freedom. For the linear molecule liquid, we study t
coupling among different degrees of freedom, which p
vides guidance for understanding more complicated liqu
@30,31#. The coupling between rotation and translation
more important than couplings involving vibrations sin
these two degrees of freedom have similar relaxation t
scales. In our derivation, we focus on the rotatio
translational couplings and consider the molecule as a r
rotor without vibrations. In this section, we use our simp
fied scheme to explore the hydrodynamic equations of m
tion in linear molecular liquids. The resulting MCT equatio
are essentially equivalent to those based on angular ex
sion @32,33# but are different in format from those based o
the interaction-site picture@34#.

Because of the coupling between translation and rotat
the collective density of linear molecular liquids is expand
both in the wave vector space and in the spheri
harmonic space, resulting in the expressionrl(kW ,t)
5(n51

N exp$ikW•rWn(t)%Yl„Vn(t)…. In this definition, the basis-
set function of the rotational space isYl„Vn(t)…, wherel is
a set of eigenvalues representing the spherical harm
function,l5$ l ,m%. Unlike the atomic liquid, where the ba
sis set for the GLE is the collective density and the longi
dinal translational current, the basis set of hydrodynam
modes for the linear molecular liquid is A

5$rl(kW ,t), jWl
T(kW ,t), jWl

R(kW ,t)%, which includes both transla
tional and rotational currents. In this basis set, the longitu
nal current is j l,z

T (kW ,t)5(nvn,z(t)exp$ikW•rWn(t)%Yl„Vn(t)…,

and the rotational current is j l,g
R (kW ,t)

5(nvn,g(t)exp$ikWrWn(t)%Yl„Vn(t)…, where g5x,y,z repre-
sents the Cartesian coordinates. For this basis set, the
zero elements of the susceptibility matrix are

^rl~kW !rl8
* ~kW !&5NSll8~k!,

^ j l,g
a ~kW ! j l8g8

* a8 ~kW !&5
N

I ab
daa8dgg8dll8 , ~41!

with

I a5H M , a5T,

I , a5R.
~42!

In the above equation,M is the mass of the linear molecul
andI is its inertial moment tensor. To construct the GLE, w
calculate the first-order time derivative of the collective de
sity,

d

dt
rl~kW ,t !5 (

n51

N

ikvnze
ikW•rWn~ t !Yl„Vn~ t !…

1 (
n51

N

eikW•rWn~ t !i @LW Yl„Vn~ t !…#vW n~ t !, ~43!

whereLW is the angular momentum operator. This equat
simplifies to
6-8
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d

dt
rl~kW ,t !5 ik j l,z

T ~kW ,t !1
im1

2
j ^l1,x
R

~kW ,t !1
im2

2
j l2,x
R

~kW ,t !

1
m1

2
j l1,y
R

~kW ,t !2
m2

2
j l2,y
R

~kW ,t !1 im jl,z
R ~kW ,t !,

~44!

with

m15Al ~ l 11!2m~m11!, m25Al ~ l 11!2m~m21!,

l15$ l ,m11%, l25$ l ,m21%. ~45!

Using these equations, we derive the first-order time
rivative of the longitudinal translational current. Since the
is no equilibrium coupling between the first-order mome
of the current, the only nonzero eigenfrequencies come f
the coupling between the longitudinal-translational curr
and the collective density. The first-order time derivative
the longitudinal-translational current is

d

dt
j l,z
T ~kW ,t !5 iVll8

T,z rl8~k,t !1Klz,l8g
T,a

* j l8g
a

1 f l,z
T ~kW ,t !,

~46!

where Klz,l8g
T,a represents the memory kernels between

longitudinal-translational currents and all the other poss
currents. The repeated symbols indicate summation ove
modes. The resulting eigenfrequencies are

iVl,l8
T,z

5„j l,z
T ~kW !,rl9

* ~kW !…„rl9~kW !rl8
* ~kW !…215

ik

Mb
~S21!l,l8 ,

~47!

and the random forces for the longitudinal-translational c
rents are

f l,z
T ~kW ,t !5

d

dt
j l,z
T ~kW ,t !2

ik

Mb
~S21!l,l8rl8~kW ,t !

2Klz,l8g
T,a

* j l8g
a . ~48!

If the potential of the system is dominated by the two-bo
interaction, the first-order time derivative ofj l,z

T (kW ,t) can be
expanded in the wave vector space and the spherical
monic space. From the previous sections, the mode-coup
memory kernels arise from the bilinear-bilinear terms and
other terms vanish in the mean-field approximation. As
result, only the bilinear-bilinear terms remain in the firs
order time derivative for the longitudinal-translational cu
rent, giving

d

dt
j l,z
T ~kW ,t !. (

q,l1 ,l2 ,l3

iqz

MV
U~l1 ,l2 ,qW !

3D~l,l1 ,^l3!rl3
~kW2qW ,t !rl2

~qW ,t !,

~49!
06111
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where U(l1 ,l2 ,qW ) is the two-body interaction term ex
panded in the wave vector and spherical harmonic spa
The constantD(l,l1 ,l3) is

D~l1 ,l2 ,l3!5F ~2l 111!~2l 211!

2l 311 G1/2

C~ l 1l 2l 3 ;000!

3C~ l 1l 2l 3 ;m1m2m3!, ~50!

where C( l 1l 2l 3 ;m1m2m3) are the Clebsch-Gordan coeffi
cients. The mode-coupling memory kernels between the
ferent longitudinal-translational currents are

^ f l,z
T ~kW ,t ! f l8,z

T,* ~kW !&5 (
qW ,$l%,$l8%

n2qzU1D1D2

M2 K~ t !, ~51!

where

K~ t !5qzU2Fl3 ,l
38
~kW2qW ,t !Fl2 ,l

28
~qW ,t !

1~k2q2!U28Fl3l
28
~kW2qW ,t !Fl2 ,l

38
~qW ,t !,

U15U~l1 ,l2 ,qW !, U25U~l18 ,l28 ,qW !,

U285U~l18 ,l28 ,kW2qW !,

D15D~l,l1 ,l3!, D25D~l8,l18 ,l38!. ~52!

The same approach can be used to derive the nonli
terms of the first-order time derivatives of the other curren
As a result, we obtain all possible mode-coupling memo
kernels from these nonlinear terms:

^ f l,z
R ~kW ,t ! f l8,z

T,* ~kW !&52 (
qW ,$l%,$l8%

n2m1U1D1D2

MI
K~ t !,

~53!

^ f l,x
R ~kW ,t ! f l8,z

T,* ~kW !&

52 (
qW ,$l%,$l8%

n2~m1
1D1

11m1
2D1

2!U1D2

2MI
K~ t !,

~54!

^ f l,y
R ~kW ,t ! f l8,y

T,* ~kW !&

5 (
qW ,$l%,$l8%

i
n2~m1

1D1
12m1

2D1
2!U1D2

2MI
K~ t !,

~55!

^ f l,z
R ~kW ,t ! f l8,z

R,* ~kW !&5 (
qW ,$l%,$l8%

n2m1m18U1D1D2

I 2 K1~ t !,

~56!
6-9
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^ f l,x
R ~kW ,t ! f l8,z

R,* ~kW !&

5 (
qW ,$l%,$l8%

n2~m1
1D1

11m1
2D1

2!m18U1D2

2I 2 K1~ t !,

~57!

^ f l,x
R ~kW ,t ! f l8,x

R,* ~kW !&5 (
qW ,$l%,$l8%

n2U1

4I 2 ~m1
1m18

1D1
1D2

1

1m1
2m18

2D1
2D2

21m1
1m18

2D1
1D2

2

1m1
2m18

1D1
2D2

1!K1~ t !, ~58!

^ f l,y
R ~kW ,t ! f l8,z

R,* ~kW !&

5 (
qW ,$l%,$l8%

in2~m1
2D1

22m1
1D1

1!m18U1D2

2I 2 K1~ t !,

~59!

^ f l,y
R ~kW ,t ! f l8,x

R,* ~kW !&5 (
qW ,$l%,$l8%

n2U1

4I 2 ~m1
2m18

1D1
2D2

1

1m1
2m18

2D1
2D2

22m1
1m18

2D1
1D2

2

2m1
1m18

1D1
1D2

1!K1~ t !, ~60!

^ f l,y
R ~kW ,t ! f l8,x

R,* ~kW !&5 (
qW ,$l%,$l8%

in2U1

4I 2 ~m1
2m18

1D1
2D2

1

1m1
2m18

2D1
2D2

22m1
1m18

2D1
1D2

2

2m1
1m18

1D1
1D2

1!K1~ t !, ~61!

^ f l,y
R ~kW ,t ! f l8,y

R,* ~kW !&5 (
qW ,$l%,$l8%

n2U1

4I 2 ~m1
1m18

1D1
1D2

1

1m1
2m18

2D1
2D2

22m1
1m18

2D1
1D2

2

2m1
2m18

1D1
2D2

1!K1~ t !, ~62!

where

K1~ t !5U2Fl3 ,l
38
~kW2qW ,t !Fl2 ,l

28
~qW ,t !

1U28Fl3 ,l
28
~kW2qW ,t !Fl2l

38
~qW ,t !,

D1
15D~l1,l1 ,l3!, D1

25D~l2,l1 ,l3!,

D2
15D~l81,l18 ,l38!, D2

25D~l82,l18 ,l38!. ~63!

For l50, the linear molecular liquid becomes an atom
molecular liquid, and the above expressions vanish exc
for the correlation function for the longitudinal-translation
currents. For Eq.~51!, all harmonic eigenvalues are zero, a
we have
06111
pt

^ f 0,z
T ~kW ,t ! f 0,z

T,* ~kW !&5(
qW

n2D1D2

M2 @qz
2Uq

21qz~k

2qz!UqU ukW2qW u#F~kW2qW ,t !F~qW ,t !,

~64!

which reduces to the mode-coupling kernel for the atom
liquid.

VI. CONCLUDING REMARKS

The goals of this paper are to apply the Gaussian fac
ization approximation to derive ideal mode-couplin
memory kernels for linear and nonlinear hydrodynam
modes and to examine the non-Gaussian behavior of the
linear density correlation function@10#. Based on the obser
vation that the random forcef 5QiLA is related to pair in-
teractions in liquids, mode-coupling memory kernels can
expressed in terms of bilinear hydrodynamic modes. Th
direct Gaussian factorization of the memory kernels and
random phase approximation for the direct pair distribut
function lead to standard mode-coupling expressions. In
paper, we adopt a more rigorous approach introduced
Zaccarelliet al. @11# to derive essentially the same results.
this approach, a self-consistent equation for the random fo
arises directly from the fluctuation-dissipation relation a
the pair interaction term of the force on the slow variabl
The mode-coupling memory kernel is obtained by remov
the self-consistent coupling terms with the mean-field
proximation and factoring multiple-point time correlatio
functions. Thus, the random phase approximation, or ot
approximations of mean-field nature, is necessary for rem
ing the coupling terms that are difficult to evaluate in t
self-consistent expression of the memory kernel. Effective
this derivation justifies the simpler scheme of applying fa
torization directly to the bilinear term in the memory kerne

Within the Gaussian factorization scheme, we deriv
mode-coupling memory kernels for the velocity autocorre
tion function ~VAF! in Sec. III, the bilinear density mode in
Sec. IV A, and the density fluctuation of linear molecul
liquids in Sec. V. In Sec. III, we used the random pha
approximation for the direct pair correlation function b
tween the tagged particle and the solvent to obtain the s
dard mode-coupling expression for the VAF. In Sec. V A, w
applied Gaussian factorization to the six-point correlat
function and used the RPA to recast the three- and four-b
distribution functions. The resulting equation takes into a
count the initial distribution as well as mode-coupling e
fects. The four-point correlation function can be useful f
calculating third-order Raman spectra and for further exa
nation of non-Gaussian effects. In Sec. V, we expanded
collective density of a linear molecule liquid in terms
spherical harmonics and derived mode-coupling express
in the spherical harmonic function space. The zero com
nent of the spherical harmonic function recovers the limit
atomic liquids. These results for linear molecular liquids a
useful for analyzing rotational spectra and Raman spectr
molecular liquids and solvents.

A key result of this paper is the investigation of no
6-10
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Gaussian effects in bilinear~four-point! density correlation
functions in Sec. IV B. In the hydrodynamic limit, we ca
directly factor the four-point correlation function into th
product of two pairs of density correlation functions. In pri
ciple, the same Gaussian factorization can also be applie
the GLE of the four-point density correlation function.
order to examine the consistency of direct factorization a
mode-coupling equations, we compare the difference
tween applying factorization before and after taking the ti
derivatives of the GLE for the four-point correlation fun
tion. The two procedures are identical for the first-order ti
derivative, but different for the second- and third-order tim
derivatives. The differences depend onD5FkW(t2t)FkW(t)
2FkW(t)SkW , the deviation from exponential behavior of th
linear density mode predicted from hydrodynamics. This d
ference function starts small initially and then approac
zero in the long-time hydrodynamic limit. It then follow
that the non-Gaussian indicator has a maximum at an in
mediate time. The amplitude of the maximum depends on
strength of the non-Markovian behavior in the liquid. F
liquids close to the hydrodynamic limit, the nonexponent
deviation of the linear mode is small and direct Gauss
factorization is a good approximation for the four-point co
relation function in the long-time limit. In contrast, low
temperature systems exhibit strong nonhydrodynamic be
ior in density fluctuations so that the non-Gaussian beha
becomes significant. Since the nonhydrodynamic beha
increases with decreasing temperature, the non-Gaussia
havior shows a similar trend. These observations agree
nt

.

m

C

W
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the results from several numerical simulations@12,13#. Our
analysis confirms and quantifies the correlation between
non-Gaussian behavior in multiple-point correlation fun
tions and the nonhydrodynamic behavior of linear modes

The key relation established in Sec. IV B is also releva
to experimental measurements. Scattering experiments
been carried out to quantify the nonexponential relaxation
density fluctuations@35–38#. Recent nonlinear experiment
are designed to investigate non-Gaussian behavior and
namic heterogeneities@15,16,39#. Equations~36! and ~40!
demonstrate that the information content from these t
kinds of experiments can be correlated within the mo
coupling formalism. In other words, if the system is not f
from the hydrodynamic regime, the two aspects of nonhyd
dynamic deviation, i.e., the nonexponential decay and n
Gaussian fluctuations, are related quantitatively. The valid
of this quantitative relation becomes questionable when
system is far away from the hydrodynamic limit and is d
namically heterogeneous. To interpret measurements in t
systems, we should introduce non-Gaussian coupling exp
itly, as in stochastic diffusion/hopping models@40–42# and
dynamic frustration models@43–45#.
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